Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mBio ; 10(6)2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31744919

RESUMO

The gut microbiota can significantly impact invading pathogens and the disease they cause; however, many of the mechanisms that dictate commensal-pathogen interactions remain unclear. Enterohemorrhagic Escherichia coli (EHEC) is a potentially lethal human intestinal pathogen that uses microbiota-derived molecules as cues to efficiently regulate virulence factor expression. Here, we investigate the interaction between EHEC and Enterococcus faecalis, a common human gut commensal, and show that E. faecalis affects both expression and activity of the EHEC type III secretion system (T3SS) via two distinct mechanisms. First, in the presence of E. faecalis there is increased transcription of genes encoding the EHEC T3SS. This leads to increased effector translocation and ultimately greater numbers of pedestals formed on host cells. The same effect was observed with several strains of enterococci, suggesting that it is a general characteristic of this group. In a mechanism separate from E. faecalis-induced transcription of the T3SS, we report that an E. faecalis-secreted protease, GelE, cleaves a critical structural component of the EHEC T3SS, EspB. Our data suggest that this cleavage actually increases effector translocation by the T3SS, supporting a model where EspB proteolysis promotes maximum T3SS activity. Finally, we report that treatment of EHEC with E. faecalis-conditioned cell-free medium is insufficient to induce increased T3SS expression, suggesting that this effect relies on cell contact between E. faecalis and EHEC. This work demonstrates a complex interaction between a human commensal and pathogen that impacts both expression and function of a critical virulence factor.IMPORTANCE This work reveals a complex and multifaceted interaction between a human gut commensal, Enterococcus faecalis, and a pathogen, enterohemorrhagic E. coli We demonstrate that E. faecalis enhances expression of the enterohemorrhagic E. coli type III secretion system and that this effect likely depends on cell contact between the commensal and the pathogen. Additionally, the GelE protease secreted by E. faecalis cleaves a critical structural component of the EHEC type III secretion system. In agreement with previous studies, we find that this cleavage actually increases effector protein delivery into host cells by the secretion system. This work demonstrates that commensal bacteria can significantly shape expression and activity of pathogen virulence factors, which may ultimately shape the progression of disease.


Assuntos
Enterococcus faecalis/fisiologia , Escherichia coli Êntero-Hemorrágica/fisiologia , Regulação Bacteriana da Expressão Gênica , Sistemas de Secreção Tipo III/genética , Proteínas de Bactérias/metabolismo , Humanos , Microbiota , Simbiose , Ativação Transcricional , Sistemas de Secreção Tipo III/metabolismo , Fatores de Virulência
2.
mBio ; 9(6)2018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30514785

RESUMO

Enteric pathogens have complex interactions with the gut microbiota. Most of what is known about them has focused on microbiota-derived metabolites or small molecules that serve as nutrients and/or signals to aid in growth or transcriptionally regulate virulence gene expression. A common virulence strategy is to express a type III secretion system (T3SS), which is a molecular syringe deployed by many Gram-negative pathogens to hijack host cell function. Enterohemorrhagic Escherichiacoli (EHEC) requires its T3SS to colonize the intestinal tract and cause disease. Here we report that a prominent member of the intestinal microbiota, Bacteroides thetaiotamicron (Bt), secretes proteases that cleave the translocon of the T3SS of EHEC to enhance effector translocation into host cells. This is in contrast from an endogenous protease from EHEC itself (namely, EspP) that cleaves the translocon protein EspB in a different site to limit effector translocation. The EspB protein forms the T3SS pore in mammalian cells, and pore proteins are conserved in the T3SSs from several pathogens. This is the first demonstration of a commensal species directly processing a pathogen's T3SS, posing a new paradigm for how the microbiota can influence the severity of disease caused by bacterial pathogens. Because T3SSs are employed by many pathogens, this phenomenon has broad implications to commensal-pathogen relationships.IMPORTANCE The gut microbiota is usually regarded as providing colonization resistance against enteric pathogens. However, some pathogens evolved to thrive with the aid of certain members of the microbiota. Several Gram-negative bacteria employ type three secretion systems (T3SSs), which are molecular syringes that deliver effector proteins to host cells, hijacking host cell function. Here we show that the T3SS of enterohemorrhagic E. coli (EHEC) is cleaved by self and microbiota-derived proteases. Self-cleavage limits effector translocation, while cleavage by the microbiota member Bacteroides thetaiotamicron (Bt) exacerbates effector translocation and lesion formation on epithelial cells.


Assuntos
Bacteroides/enzimologia , Escherichia coli Êntero-Hemorrágica/metabolismo , Microbiota , Peptídeo Hidrolases/metabolismo , Sistemas de Secreção Tipo III/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/metabolismo , Escherichia coli Êntero-Hemorrágica/genética , Células Epiteliais/microbiologia , Proteínas de Escherichia coli/metabolismo , Células HeLa , Humanos , Transporte Proteico , Proteólise , Proteoma/metabolismo , Virulência , Fatores de Virulência/metabolismo
3.
Infect Immun ; 86(4)2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29358334

RESUMO

The QseEF histidine kinase/response regulator system modulates expression of enterohemorrhagic Escherichia coli (EHEC) and Salmonella enterica serovar Typhimurium virulence genes in response to the host neurotransmitters epinephrine and norepinephrine. qseG, which encodes an outer membrane lipoprotein, is cotranscribed with qseEF in these enteric pathogens, but there is little knowledge of its role in virulence. Here, we found that in EHEC QseG interacts with the type III secretion system (T3SS) gate protein SepL and modulates the kinetics of attaching and effacing (AE) lesion formation on tissue-cultured cells. Moreover, an EHEC ΔqseG mutant had reduced intestinal colonization in an infant rabbit model. Additionally, in Citrobacter rodentium, an AE lesion-forming pathogen like EHEC, QseG is required for full virulence in a mouse model. In S Typhimurium, we found that QseG regulates the phase switch between the two flagellin types, FliC and FljB. In an S Typhimurium ΔqseG mutant, the phase-variable promoter for fljB is preferentially switched into the "on" position, leading to overproduction of this phase two flagellin. In infection of tissue-cultured cells, the S Typhimurium ΔqseG mutant provokes increased inflammatory cytokine production versus the wild type; in vivo, in a murine infection model, the ΔqseG strain caused a more severe inflammatory response and was attenuated versus the wild-type strain. Collectively, our findings demonstrate that QseG is important for full virulence in several enteric pathogens and controls flagellar phase variation in S Typhimurium, and they highlight both the complexity and conservation of the regulatory networks that control the virulence of enteric pathogens.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Citrobacter rodentium/fisiologia , Escherichia coli Êntero-Hemorrágica/fisiologia , Proteínas de Escherichia coli/metabolismo , Flagelos/fisiologia , Salmonella typhimurium/fisiologia , Animais , Proteínas da Membrana Bacteriana Externa/genética , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/genética , Flagelina/biossíntese , Regulação Bacteriana da Expressão Gênica , Camundongos , Mutação , Regiões Promotoras Genéticas , Ligação Proteica , Coelhos , Deleção de Sequência , Transcrição Gênica , Virulência
4.
Cell Host Microbe ; 18(3): 275-84, 2015 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-26355214

RESUMO

The mammalian gastrointestinal (GI) microbiota is highly adapted to thrive in the GI environment and performs key functions related to host nutrition, physiology, development, immunity, and behavior. Successful host-bacterial associations require chemical signaling and optimal nutrient utilization and exchange. However, this important balance can be severely disrupted by environmental stimuli, with one of the most common insults upon the microbiota being infectious diseases. Although the microbiota acts as a barrier toward enteric pathogens, many enteric pathogens exploit signals and nutrients derived from both the microbiota and host to regulate their virulence programs. Here we review several signaling and nutrient recognition systems employed by GI pathogens to regulate growth and virulence. We discuss how shifts in the microbiota composition change host susceptibility to infection and how dietary changes or manipulation of the microbiota could potentially prevent and/or ameliorate GI infections.


Assuntos
Microbioma Gastrointestinal , Trato Gastrointestinal/microbiologia , Interações Hospedeiro-Patógeno , Transdução de Sinais , Simbiose , Animais , Humanos , Mamíferos , Virulência
5.
Cell Host Microbe ; 17(5): 672-80, 2015 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-25974305

RESUMO

Microbes interact with the host immune system via several potential mechanisms. One essential step for each mechanism is the method by which intestinal microbes or their antigens access specific host immune cells. Using genetically susceptible mice (dnKO) that develop spontaneous, fulminant colitis, triggered by Bacteroides thetaiotaomicron (B. theta), we investigated the mechanism of intestinal microbial access under conditions that stimulate colonic inflammation. B. theta antigens localized to host immune cells through outer membrane vesicles (OMVs) that harbor bacterial sulfatase activity. We deleted the anaerobic sulfatase maturating enzyme (anSME) from B. theta, which is required for post-translational activation of all B. theta sulfatase enzymes. This bacterial mutant strain did not stimulate colitis in dnKO mice. Lastly, access of B. theta OMVs to host immune cells was sulfatase dependent. These data demonstrate that bacterial OMVs and associated enzymes promote inflammatory immune stimulation in genetically susceptible hosts.


Assuntos
Antígenos de Bactérias/metabolismo , Bacteroides/metabolismo , Colite/microbiologia , Interações Hospedeiro-Patógeno , Vesículas Secretórias/enzimologia , Vesículas Secretórias/metabolismo , Sulfatases/metabolismo , Animais , Bacteroides/genética , Colite/induzido quimicamente , Colite/patologia , Modelos Animais de Doenças , Deleção de Genes , Genes Bacterianos , Camundongos
7.
mBio ; 5(6): e02172, 2014 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-25389179

RESUMO

UNLABELLED: Gut microbes play a key role in human health and nutrition by catabolizing a wide variety of glycans via enzymatic activities that are not encoded in the human genome. The ability to recognize and process carbohydrates strongly influences the structure of the gut microbial community. While the effects of diet on the microbiota are well documented, little is known about the molecular processes driving metabolism. To provide mechanistic insight into carbohydrate catabolism in gut symbionts, we studied starch processing in real time in the model Bacteroides thetaiotaomicron starch utilization system (Sus) by single-molecule fluorescence. Although previous studies have explored Sus protein structure and function, the transient interactions, assembly, and collaboration of these outer membrane proteins have not yet been elucidated in live cells. Our live-cell superresolution imaging reveals that the polymeric starch substrate dynamically recruits Sus proteins, serving as an external scaffold for bacterial membrane assembly of the Sus complex, which may promote efficient capturing and degradation of starch. Furthermore, by simultaneously localizing multiple Sus outer membrane proteins on the B. thetaiotaomicron cell surface, we have characterized the dynamics and stoichiometry of starch-induced Sus complex assembly on the molecular scale. Finally, based on Sus protein knockout strains, we have discerned the mechanism of starch-induced Sus complex assembly in live anaerobic cells with nanometer-scale resolution. Our insights into the starch-induced outer membrane protein assembly central to this conserved nutrient uptake mechanism pave the way for the development of dietary or pharmaceutical therapies to control Bacteroidetes in the intestinal tract to enhance human health and treat disease. IMPORTANCE: In this study, we used nanometer-scale superresolution imaging to reveal dynamic interactions between the proteins involved in starch processing by the prominent human gut symbiont Bacteroides thetaiotaomicron in real time in live cells. These results represent the first working model of starch utilization system (Sus) complex assembly and function during glycan catabolism and are likely to describe aspects of how other Sus-like systems function in human gut Bacteroidetes. Our results provide unique mechanistic insights into a glycan catabolism strategy that is prevalent within the human gut microbial community. Proper understanding of this conserved nutrient uptake mechanism is essential for the development of dietary or pharmaceutical therapies to control intestinal tract microbial populations, to enhance human health, and to treat disease.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Bacteroides/metabolismo , Trato Gastrointestinal/microbiologia , Imagem Óptica/métodos , Amido/metabolismo , Animais , Proteínas da Membrana Bacteriana Externa/genética , Bacteroides/genética , Bacteroides/isolamento & purificação , Técnicas de Inativação de Genes , Humanos , Multimerização Proteica
8.
mBio ; 5(5): e01441-14, 2014 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-25205092

RESUMO

UNLABELLED: To compete for the dynamic stream of nutrients flowing into their ecosystem, colonic bacteria must respond rapidly to new resources and then catabolize them efficiently once they are detected. The Bacteroides thetaiotaomicron starch utilization system (Sus) is a model for nutrient acquisition by symbiotic gut bacteria, which harbor thousands of related Sus-like systems. Structural investigation of the four Sus outer membrane proteins (SusD, -E, -F, and -G) revealed that they contain a total of eight starch-binding sites that we demonstrated, using genetic and biochemical approaches, to play distinct roles in starch metabolism in vitro and in vivo in gnotobiotic mice. SusD, whose homologs are abundant in the human microbiome, is critical for the initial sensing of available starch, allowing sus transcriptional activation at much lower concentrations than without this function. In contrast, seven additional binding sites across SusE, -F, and -G are dispensable for sus activation. However, they optimize the rate of growth on starch in a manner dependent on the expression of the bacterial polysaccharide capsule, suggesting that they have evolved to offset the diffusion barrier created by this structure. These findings demonstrate how proteins with similar biochemical behavior can serve orthogonal functions during different stages of cellular adaptation to nutrients. Finally, we demonstrated in gnotobiotic mice fed a starch-rich diet that the Sus binding sites confer a competitive advantage to B. thetaiotaomicron in vivo in a manner that is dependent on other colonizing microbes. This study reveals how numerically dominant families of carbohydrate-binding proteins in the human microbiome fulfill separate and sometimes cooperative roles to optimize gut commensal bacteria for nutrient acquisition. IMPORTANCE: Our intestinal tract harbors trillions of symbiotic microbes. A critical function contributed by this microbial community is the ability to degrade most of the complex carbohydrates in our diet, which not only change from meal to meal but also cannot be digested by our own bodies. A numerically abundant group of gut bacteria called the Bacteroidetes plays a prominent role in carbohydrate digestion in humans and other animals. Currently, the mechanisms that allow this bacterial group to rapidly respond to available carbohydrates and then digest them efficiently are unclear. Here, we present novel functions for four carbohydrate-binding proteins present in one member of the Bacteroidetes, revealing that these proteins serve unique and separable roles in either initial nutrient sensing or subsequent digestion. Because the protein families investigated are numerous in other gut bacteria colonizing nearly all humans and animals, our findings are fundamentally important to understanding how symbiotic microbes assist human digestion.


Assuntos
Proteínas de Bactérias/metabolismo , Bacteroides/metabolismo , Trato Gastrointestinal/microbiologia , Regulação Bacteriana da Expressão Gênica , Amido/metabolismo , Animais , Proteínas de Bactérias/genética , Bacteroides/genética , Metabolismo dos Carboidratos , Catálise , Vida Livre de Germes , Humanos , Camundongos , Peso Molecular , Polissacarídeos Bacterianos/metabolismo , Simbiose
9.
J Biol Chem ; 287(41): 34614-25, 2012 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-22910908

RESUMO

Human colonic bacteria are necessary for the digestion of many dietary polysaccharides. The intestinal symbiont Bacteroides thetaiotaomicron uses five outer membrane proteins to bind and degrade starch. Here, we report the x-ray crystallographic structures of SusE and SusF, two outer membrane proteins composed of tandem starch specific carbohydrate-binding modules (CBMs) with no enzymatic activity. Examination of the two CBMs in SusE and three CBMs in SusF reveals subtle differences in the way each binds starch and is reflected in their K(d) values for both high molecular weight starch and small maltooligosaccharides. Thus, each site seems to have a unique starch preference that may enable these proteins to interact with different regions of starch or its breakdown products. Proteins similar to SusE and SusF are encoded in many other polysaccharide utilization loci that are possessed by human gut bacteria in the phylum Bacteroidetes. Thus, these proteins are likely to play an important role in carbohydrate metabolism in these abundant symbiotic species. Understanding structural changes that diversify and adapt related proteins in the human gut microbial community will be critical to understanding the detailed mechanistic roles that they perform in the complex digestive ecosystem.


Assuntos
Proteínas de Bactérias , Bacteroides , Metabolismo dos Carboidratos/fisiologia , Lectinas , Amido/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Bacteroides/química , Bacteroides/metabolismo , Colo/metabolismo , Colo/microbiologia , Cristalografia por Raios X , Humanos , Lectinas/química , Lectinas/metabolismo , Estrutura Terciária de Proteína
10.
Nat Rev Microbiol ; 10(5): 323-35, 2012 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-22491358

RESUMO

Symbiotic microorganisms that reside in the human intestine are adept at foraging glycans and polysaccharides, including those in dietary plants (starch, hemicellulose and pectin), animal-derived cartilage and tissue (glycosaminoglycans and N-linked glycans), and host mucus (O-linked glycans). Fluctuations in the abundance of dietary and endogenous glycans, combined with the immense chemical variation among these molecules, create a dynamic and heterogeneous environment in which gut microorganisms proliferate. In this Review, we describe how glycans shape the composition of the gut microbiota over various periods of time, the mechanisms by which individual microorganisms degrade these glycans, and potential opportunities to intentionally influence this ecosystem for better health and nutrition.


Assuntos
Biota , Dieta , Trato Gastrointestinal/microbiologia , Metagenoma/fisiologia , Polissacarídeos/metabolismo , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...